Aerospace Battery Development for the Exploration System Technology Development Program Tom Miller RPC/Electrochemistry Branch August 4, 2006 NASA Glenn Research Center Cleveland, OH ## **Energy Storage Project Background** - Exploration Systems Technology Development Program Objectives - Mature advanced technologies to TRL 6 - Integrate component technologies into prototype systems to validate performance - Transition technology products to Project Constellation - Mature key technologies to support various missions - Crew Exploration Vehicle (CEV) - Crew Launch Vehicle (CLV) - Robotic Lunar Exploration Program - Lunar Sortie Missions - Defer development of long-term technologies for lunar base and Mars exploration until needed - Technology Development Program includes past elements - ESR&T program - Life support and environmental control from HSR&T program ## **Energy Storage Project Background** - Energy Storage Project Plan encompasses two tasks - Task 4E Lithium-Ion Batteries - Task 4B Fuel Cells for Surface Systems - Numerous existing program efforts folded into a single focused Exploration effort - Batteries - NASA Aerospace Flight Battery Program (led by GRC) - Advanced Electrochemical Energy Storage in Power, Propulsion, and Chemical Systems (led by JPL) - Advanced Batteries for Space (led by T/J Technologies, Inc.) - Fuel Cells - PEMFC Power Plant Development (led by GRC in partnership with Teledyne Energy Systems, Inc.) - High Energy Density Regenerative Fuel Cell (RFC) Development (led by Lockheed Martin Space Corporation) ## **Exploration Technology Development Program** **ENERGY STORAGE PROJECT** ### Fuel Cells For Surface Systems and Space Rated Lithium-Ion Batteries ### **Brief Description** - ESAS architecture requires advanced Fuel Cell and Battery Technologies to meet power requirements. - Proton Exchange Membrane (PEM) fuel cell technology offers major advances over existing alkaline fuel cell technology including: enhanced safety, longer life, lower mass, higher peak-to-nominal power capability, compatibility with propulsion grade reactants. Participating Centers: GRC (Lead), JSC, JPL, KSC - Lithium-ion battery technology offers higher specific energy, lower mass & volume. - Includes NASA LEO Verification Battery Life-Cycle Test Program. Participating Centers: GRC (Lead), JPL, JSC, GSFC, MSFC ## <u>Deliverables</u> #### **Fuel Cell:** - Develop PEM Fuel Cell Technology in the 1 to 10kW power range including generic elements with applications below 1 kW and above 10kW. - Develop passive components to reduce system complexity, system mass and increase efficiency of PEM fuel cell. Applicable to CEV, Lunar Surface- LSAM, Rovers, Habitat, RLEP ### **Lithium-Ion Battery:** Develop/demonstrate advanced technologies for a humanrated lithium-ion battery with improved life and broad temperature operating range. Applicable to CEV,CLV, LSAM, & lunar surface systems. ## Key Milestones | Milestone | Year | |--|------| | Achieve TRL-6* with Primary Active PEM Fuel Cell System (*does not meet projected flight requirements) | 2006 | | Complete Upgraded Passive PEM Fuel Cell Breadboard (TRL-5) Performance Test | 2007 | | Achieve 10,000 LEO cycles - SOA Li-ion cell (TRL4) | 2006 | | Qualify 1st human-rated modular battery design (TRL-5) | 2008 | | Deliver modular battery with qualified charge control electronics (TRL-6) | 2011 | | Achieve TRL-6- Primary Passive PEM Fuel Cell System | 2012 | ### **Budget** ### **Energy Storage Project Budget (Direct Costs \$K)** | Lifergy Storage Project Budget (Birect Costs \$K) | | | | | | | |---|-------|------|------|------|-------|-------| | | FY06* | FY07 | FY08 | FY09 | FY10 | FY11 | | Fuel
Cell | 5000* | 1932 | 1673 | 1673 | 7796 | 9836 | | Li-lon
Battery | 3500* | 3382 | 2927 | 2927 | 3031 | 3935 | | Total | 8500* | 5314 | 4600 | 4600 | 10827 | 13771 | ^{*} Full Cost Dollars ## **ESMD ENERGY STORAGE APPLICATIONS** CEV (CM/SM) 5-10 kWh Li-Ion battery CLV (125 ton) Li-Ion Batteries LSAM 13.5 kWh Li-Ion battery EVA Suit Li-ion/Fuel cell 200 W for 8 h Rovers/Landers Li-Ion Batteries – 1-10 kWh Fuel cells 10 kWh Lunar Habitat Surface Power Systems 30 kW Li-Ion /Fuel cell ## Constellation Elements that will Require Energy Storage ### CEV - Service Module, Command Module - Basic requirements- high specific energy and energy density ### CLV - Thrust Vector Control (TVC), Upper Stage (US) - TVC basic requirements high voltage system, high specific power, pulsed profile - US basic requirements high specific energy and energy density ### LSAM - LEO phase, LLO phase, Ascent phase (from Lunar Surface) - Electrochemical energy storage is one approach being traded-off to meet these needs. Other power generation options are also under consideration. #### FVA - Space suit power system - Basic requirements high energy, wide operating temperature, rapid recharge ### General observations - Mass reduction is critical to meet launch weight targets - Cycle life requirements are not challenging for SOA Lithium-ion systems - Many of the missions will be manned. Human-rated systems will be required if batteries are housed in or near crew compartment— stricter qualification process, safety issues with lithium-ion must be adequately addressed - Currently, the thermal environment the energy storage system must operate under is poorly defined in many cases— may affect battery capacity requirements, thermal control of battery ## Lithium-Ion Battery Objectives and Targets | Object
Description | Measurable
Technology Metric | State-of-the-Art
(SOA) | Performance (
(Full Success Cri | | Performance Goal
(Min. Success Crite | rion) | Validation
Method | |--|---|---|---|-------|--|-------|---| | Develop
advanced
components
for Space-
rated Li-ion
cells | •Cathode specific capacity •Operational temp. °C •Safety | •150 mAh/g •-20°C to +40°C • Includes aux. controls - PTC shutdown separator | •250 mAh/g @25° •-60°C to +60°C •Tolerant to mild a overcharge and ov temperature | abuse | •180 mAh/g @25°C •-40°C to +40°C •Non-flammable ele | | Laboratory
screening of
components to
demonstrate
performance in
coin cells | | Develop
Space-rated
advanced
Li-ion cell | Specific Energy Energy Density Operating temp. Safe Calendar life Cycle life | •130 Wh/kg
•320 Wh/l
• -20°C to +40°C
• aux. controls
• >3 years
• 1500 cycles | •180 Wh/kg
•400 Wh/l
•-60°C to +60°C
•Non-explosive
•5 years
•2000 cycles | TRL6 | •140 Wh/kg
•350 Wh/l
•-40°C to +40°C
•Reduced abuse haze
•5 years
•1500 cycles | TRL6 | Demonstrate
performance in
prototype
aerospace cells | | Develop and
Qualify
Space-rated
Li-Ion
batteries | •Specific Energy •Energy Density •Operating temp. •Human-rated •High power •Calendar life •Cycle life | •90 Wh/kg
•250 Wh/l
•-20°C to +40°C
•<3 years
•1500 cycles | •140 Wh/kg
•300 Wh/l
•-60°C to +60°C
•Non-explosive
•500 W/kg
•5 years
•1500 cycles | TRL6 | •120 Wh/kg •280 Wh/l •-40°C to +40°C • abuse tolerant •400 W/kg •5 years •1500 cycles | TRL6 | Demonstrate
performance in
prototype EM
battery modules | | Develop
charge control
methods for
Space-rated
Li-Ion
batteries | •Fast Recharge rate •Safe •Reliable | Benign slow charge rates C/4 Relies on critical cell matching TBD | •C rate at +25°C •C rate at 0°C •C/2 rate at -20°C •No Li plating •overcharge / overdischarge tolerant •Over-discharge to | ·- | •C rate at +25°C •C/2 rate at 0°C •C/5 rate at -20°C •No Li plating •overcharge/over-distolerant •Cell balance | TRL4 | Demonstrate
stable voltage
and capacity
performance
together with
prototype cells
and batteries | ## Typical Lithium-ion Cell and Battery Designs Saft Cylindrical Lithium-Ion Cell Saft VL10E Battery 2P8S Lithion Prismatic Lithium-Ion Cell 8 Cell, 28 Volt Battery ## **Alternate Battery Module Concepts** 18650 Lithium-ion Cell Commercial Cell Design Various Series/Parallel 18650 Cell Configurations Provide Flexible Voltage and Ampere-hour Capacity ## **Lithium-Ion Cell Material Development Activities** ### Electrolytes - Synthesize new liquid electrolytes to enable low-temperature operation - Develop polymer-based electrolytes to provide higher specific energy - Lithium-ion Conducting Polyelectrolytes - Plasticized/ionic liquids ### Cathode - Improve specific capacity - Lithiated MnNiCo oxide chemistries - Layered metal oxide chemistries - Lithium iron phosphate ### Anode - Carbon: Carbon composite substrate - Silicon composite - Shutdown Separator - Customize pore size/flow temperature to provide safety feature to avoid thermal runaway condition ### **Lithium-Ion Cell Activities** - Screen components through a design-of-experiments approach - Assess impacts and interactions in coin cells - Provide statistical basis for preferred cell features - Insert new component materials into cell product line - Specify multiple lithium-ion cell design to vendors (Generation 1, 2, 3) - Fabricate small production lot to evaluate performance - Acceptance - Characterization - Abuse - Life cycle - Conduct Destructive Physical Analysis on cells to investigate failure modes - Conduct autopsy on new cells and at various stages of cycled cells - Provide recommendations for cell design improvements for next cell generation - Conduct safety/abuse testing to assist in human-rated certification process - Baseline preferred cell design for near-term Exploration missions ## **Lithium-Ion Battery Module Activities** - Conduct trade studies to determine optimum battery module for multiple Exploration Missions - Drivers include voltage, ampere-hour capacity, cycle life, thermal considerations, structural loads, and commonality - Develop common battery module design that meets performance requirements - Module can accept lithium-ion cells from multiple vendors - Power, thermal, and data interfaces are controlled - Fabricate module with Generation 1 cells - Integrate charge control circuitry and software with the module - Conduct acceptance level testing - Perform environmental qualification testing to attain TRL 5 - Conduct mission profile testing to quantify performance degradation - Low-Earth-orbit (LEO) cycling - Low-lunar-orbit (LLO) cycling - Cruise operations where the module is in a charged mode only ## **Component Screening Hardware** ## Coin cell ## **Conductivity Cell** ## **Typical Laboratory Scale Hardware** ## **Developed multiple cell configurations** for component evaluation ## Milestone on Low Temperature (-40°C) Electrolyte **Evaluation of Fluoroester-Based Low Temperature Electrolytes Discharge Characterization at Various Temperatures** The cell containing the 1.0 M LiPF6 in EC+EMC+TFEB (20:60:20 v/v %) delivers superior performance at low temperature compared to previously evaluated electrolytes. ## Milestone on 250 mAh/g Cathode Confirmation Tests at JPL - capacity that was attributed to a calibration error from the (Arbin) cycler. Once corrected, high capacities of ~ 230 mAh/g were obtained. - The kinetics of this materials are still poor, especially at low temperatures. - Improved performance is expected by incorporating a series of coatings on high specific capacity cathode materials to yield better discharge rate performance. ### **Test and Demonstration Task Breakdown** ## Purpose - To evaluate the performance of cell and battery products developed through other tasks in this program - To assess and validate the performance of stateof-the-art lithium-based secondary cells and batteries to meet a wide variety of Constellation missions ## **NASA Lithium-Ion Cell Verification Test Program** - LEO life test to generate data for model - Statistical Design-of-Experiments (DOE) to predict life of cells operating in LEO regimes - Variables: Depth-of Discharge (DOD) Temperature (°C) End of Charge Voltage (EOCV) - 40 cells each from multiple vendors - Testing being conducted at Naval Facility in Crane, IN - Program structure allows for cells from additional vendors to enter program when funding allows ## **Lithium-Ion LEO Verification Test Program** ### **Test Articles** - 40 Lithion (30 Ah) cells - INCP 95/28/154 - Delivered 4/02 - 40 Saft (40 Ah) cells - G4 chemistry space cells (HE54245) - Delivered 4/02 - 40 MSA (50 Ah) cells - 50G01 - Delivered 10/05 - 20 4s-2p modules of Sony HC 18650 cells from ABSL - 4S-2P-SSTB - Delivered 7/05 ## **Lithium-Ion LEO Verification Test Program** ## **Testing** - Acceptance Testing - Characterization Testing - Actual Capacity Determination - Self-Discharge Rate - Capacity at Specific LEO Test Conditions - Life Cycling at LEO Test Conditions Cell test conditions for LEO test are based on average actual discharge capacity between 4.1 V to 3.0 V measured at C/2 and 20°C ### **LEO Test Matrix** | Temp(°C) | Voltage/cell | DoD | |----------|--------------|----------------------------------| | 30 | 4.05 | 20 | | 30 | 3.85 | 20 | | 10 | 3.85 | 20 | | 30 | 3.95 | 30 | | 20 | 3.95 | 20 | | 10 | 3.85 | 40 ¹ /35 ² | | 20 | 3.85 | 30 | | 30 | 3.85 | 40 ¹ /35 ² | | 20 | 4.05 | 40 ¹ /35 ² | | 10 | 4.05 | 30 | - 1 Lithion, MSA, ABSL - 2 Saft ## **Lithium-Ion LEO Verification Test Program** ### **Characterization Test Results** - Capacity measured at temperatures: -30°C, -10°C, 0°C, 10°C, 20°C, 30°C, 40°C, 50°C - Saft cells would not cycle at -30°C - Two ABSL modules were connected together to form 4S-4P modules ### **Capacity vs Temperature** • No data for -30°C ### **Cell Assessment and Validation** - Battery Level Performance evaluation - 2001 Mars Surveyor Program Lander Battery Life Test - Heritage LEO life test initiated in 2003 - 40% DOD, 0 °C, 32 V EOCV - Has achieved 12000+ cycles to date ### **Cell Assessment and Validation** - Cell Level performance evaluations - Evaluation of cells to meet a wide variety of Exploration mission requirements - Standard test plan for baseline cell performance evaluation - Includes stabilization, actual capacity determination, capacity and internal resistance performance, cycle life testing, discharge rate capability, charge rate capability, and mission profile testing - Adjustments to standard procedures can be made for cells with special capabilities - Plan can be modified to perform fewer test when only a limited number of cells are available (due to budget or other constraints) - Test plan calls for mission profile testing - Will vary by mission, mission requirements are not fully defined, preliminary power/energy storage requirements are being worked in the various Constellation studies our group supports - Data on baseline performance characteristics can be shared across missions ## **Battery Module Development** - Identify a common battery module that can be used across multiple mission platforms - Based upon the results of the overall trade studies that address bus voltage, energy, and power capabilities specify a battery design concept to ensure the best form, fit, and functional match with Exploration energy storage requirements - Identify minimum building block size cell capacity - Qualification of high energy density and/or high power cell building blocks - Qualification of modules consisting of qualified Gen-1 cells - Include results of charge control studies and development of developmental electronics to control cell charging at the module level - Modules can be scaled up into batteries and ORUs to meet energy storage requirements for individual missions - Plug and Play capability to accommodate series and parallel configuration - Design, develop, and qualify the module/battery at TRL6 ## **Battery Module Qualification** - Planned testing at GRC includes: - -Functional performance - -Acceptance level - -Acoustic - -Random vibration - -Shock - -Thermal vacuum - –Post Functional performance - Upon successful qualification testing to TRL6, the battery module will be placed on life test in FY08 to provide long term performance at the anticipated key mission design point. # Task 4E Space-Rated Lithium-Ion Battery Concluding Remarks - Verification for Exploration Applications - -Cycle life and calendar life - –Charge and Discharge Rate capability - -Performance over a wide temperature range - -Safety/abuse tolerance for Human-rated battery technology - -Cell/Battery module level performance - Lithium-ion is a viable energy storage technology to meet NASA's future Exploration Mission Requirements ## **Back-Up Milestone Charts** | Exploration | on Archite | ecture Ei | ements and Ene | | |---|--|--|--|--| | ESAS Architectural | Missions/ | Energy System | | PEM Fuel Cell Technolog | | elements | Applications | Sizing | Development Drivers | Development Drivers | | Crew Exploration
Vehicle (CEV)
2009 Test Flight
2011 Crewed Flight | Command Module
(CM)
Service Module
(SM) | • 5-10 KWh
• 4.5 kW
Ave
3X 28 V bus | Human-rated (Safety) High energy density Long life, high power High temp. resilience | Primary Fuel Cell High Voltage Performance Long Life System Simplicity Low Mass & Volume | | | Crew Launch
Vehicle (CLV) | | Human-rated (Safety) High energy density Long shelf life, high power High temp. resilience | | | Lunar Surface Access Module (LSAM) • 2010 Begin Effort • 2012-2013 Tech • Insertion • 2017 First Launch | Ascent Stage | • 13.5 kWh
• 3 x 28 V
bus | Human-rated (Safety) High energy density Long life, high power High temp. resilience | Primary Fuel Cell High Voltage Performance Long Life System Simplicity Low Mass & Volume | | Sorties RLEP2- 2011- 2012 | EVA | • 0.1- 1 kW | Human-rated (Safety) High energy density Long shelf and calendar life, high power Low and high temp performance | Regenerative Fuel Cell High Electrical Efficiency High Energy Density Long Life System Simplicity Low Mass & Volume | | | Un-pressurized
Rovers/landers | • 1 kW | Low and high temp
performanceHigh energy density | Primary Fuel CellHigh Voltage PerformanceLong Life | | Outpost
Missions | Un-pressurized
Rovers/landers | • 1 kW | Long life, high power | System SimplicityLow Mass & Volume | | 2020-
2022 | Pressurized
Rovers/landers | • 1-5 kW | Human-rated (Safety) High energy density Long cycle life, high power Low and high temp
performance | Primary Fuel Cell High Voltage Performance Long Life System Simplicity Low Mass & Volume | | | Fuel cell/battery
hybrid power | • 10-100 kW | Human-rated (Safety)High energy density | Regenerative Fuel Cell/High Electrical Efficiency | | esearch Center at Le | Station
Wis Field | | Long cycle life, high power | Long LifeSystem SimplicityLow Mass & Volume | ## **Energy Storage Technology for Exploration Missions** NASA Glenn Research Center Kennedy Space Center Johnson Space Propulsion Laboratory Marshall States Johnson Space Center Marshall Space Flight Center ## **Table 2-1 Energy Storage Project Milestones and Deliverables FY 2006** | WBS | Tasks | Milestones | Deliverables | Date | |-----|----------------------------|--|---|--------| | 1.0 | Management | Kickoff | Project Plan signed/completed | • 2Q06 | | | | Confirmation Review | Deliver final WBS, Task Plan, schedule | • 2Q06 | | | | Complete detailed WBS task plan schedule | | • 2Q06 | | | | | Initial Risk Assessment | • 3Q06 | | | | Complete detailed Planning FY07 | Deliver Updated WBS, Task Plan, Schedule | • 4Q06 | | 2.1 | Exploration Systems | Complete Exploration Energy Storage Requirements | Requirements Document | • 3Q06 | | | Requirements | Document | | | | 2.2 | Trade Studies | Complete Gap Analysis | | • 3Q06 | | | | Complete trades studies | Trade Study Reports | • 4Q06 | | 3.1 | Battery Cell | Demonstrate cathode with 250 mAh/g (Gen-1) | Gen-1 Cathode-250 mAh/g | • 3Q06 | | | Development | Demonstrate liquid electrolyte for -40 to + 50°C operation with cathode (Gen-1) | • Gen-1 Electrolyte for -40 to + 50°C operation | • 3Q06 | | | | Define poly electrolyte conductivity limits | Report on conductivity test results and definition
of develop ment effort required | • 4Q06 | | | | Complete fabrication of test cells with best GRC polymer electrolyte (T/J) | Pouch cells for evaluation | • 4Q06 | | | | Complete scale up batch of T/J lithium iron phosphate (LFP) cathode powder (T/J) | | • 4Q06 | | | | Complete carbon -carbon anode cell development | Report on carbon-carbon anode | • 4Q06 | | | | (negative voltage capability) for improved safety | performance/safety | | | | | Complete pressure measurements on different Li-ion cell configurations | Report on cell pressure measurements on different
Li-ion cell configurations | • 4Q06 | | 3.2 | Battery Development | Initiate study on alternate charge methodologies | | • 4Q06 | | 3.3 | Test and
Demonstration | Initiate Li-ion cell testing to assess effects of current charging methodologies | | • 2Q06 | | | | Achieve 10,000 LEO cycles/SAFT and Lithion cells
(NASA Li-ion Test Verification Program) | Demonstration of performance, flow of data into performance model | • 4Q06 | | | | Complete first year performance and safety assessments
of SOA cells for Exploration Missions | Reports on the performance and safety of cells for
Exploration Missions | • 4Q06 | | | | Complete evaluation of cells with variable temperature shutdown separator incorporated | Report on shutdown separator results | • 4Q06 | | | | Complete safety testing and tear-down analysis of SOA commercial-off-the-shelf (COTS) and aerospace Li-ion cells | Report on SOA safety testing on aerospace Li-ion cells | • 4Q06 | | 3.4 | Multi-Mission Support | Publish Battery Workshop Proceedings | Battery Workshop Proceedings | • 3Q06 | | | | Complete build of Li-ion battery cell testbed for real-
time observer (model Li-ion cell performance) | | • 4Q06 | ## Table 2-4 Energy Storage Project Milestones and Deliverables FY 2009 | WBS | Tasks | Milestones | Deliverables | Date | |-----|-----------------------------|--|--|-------------------------------------| | 1.0 | Management | Complete updated Project Plan | Deliver updated Project Plan | • 4Q09 | | 2.0 | Energy Storage
Systems | Complete Requirements UpdateComplete Gap Analysis | | • 3Q09
• 3Q09 | | 3.1 | Battery Cell
Development | Complete performance testing of Gen-2 Li-ion cells for
Exploration Missions Complete Destructive Physical Analysis (DPA) of Gen-2 Li-ion
cells containing component enhancements | Gen-2 Li-ion cells and report on the performance
and safety of Gen-2 Li-ion cells Report describing failure modes of Gen-2 Li-ion
cells | 4Q094Q09 | | 3.2 | Battery
Development | Final assessment of charge methodologies Incorporate results of pressure studies into design for high voltage and/or high capacity batteries for lander/rover applications, using cells with variable temperature shutdown separator incorporated | Charge methodologies report 20 kWh, 70 to 85 V battery design | • 4Q09
• 4Q09
• 4Q09 | | 3.3 | Test and
Demonstration | Complete fourth year performance and safety assessment of
Li-ion cells for Exploration Missions Test and validate battery module engineering model | Reports on the performance and safety of SOA cells for Exploration Missions Validated battery module engineering model | 4Q094Q09 | | 3.4 | Multi-Mission
Support | Convene NASA Aerospace Battery Workshop Publish Battery Workshop proceedings | Battery Workshop Proceedings | • 1Q09
• 3Q09 | ## Table 2-2 Energy Storage Project Milestones and Deliverables FY 2007 | WBS | Tasks | Milestones | Deliverables | Date | |-----|--------------------------|--|--|--| | 1.0 | Management | Complete detailed FY08 planning | Deliver updated WBS, Task Plan, schedule | • 4Q07 | | 2.0 | Energy Storage Systems | Complete Requirements UpdateComplete Gap Analysis | | • 3Q07
• 3Q07 | | 3.1 | Battery Cell Development | Complete fabrication/qualification of prismatic 7 Ah cells with LFP cathode (T/J) Complete evaluation of GRC polymer (T/J) Quantify technical feasibility of gel-polymer/solid | Twenty prismatic cells delivered Report on performance and recommendation Report on technical evaluations of candidate | • 1Q07
• 2Q07
• 2Q07 | | | | Approach to polyelectrolyte interfacial impedance practical technical barrier issue defined | technologies and further definition of polyelectrolyte development task Report and proposal task plan for polyelectrolyte development task | • 3Q07 | | | | Demonstrate cathode with enhanced thermal stability Synthesize non-flammable Electrolyte (Gen-1) Fabricate and characterize prototype cells with Gen-1 | Gen-1 cathode Gen-1 Non-flammable electrolyte Li-ion prototype cells with Gen-1 components | • 3Q07
• 3Q07
• 4Q07 | | | | components Complete pressure studies on large capacity Li-ion cells Identify life-limiting mechanisms of SOA Li-ion cells Destructive Physical Analysis (DPA) of Gen-1 Li-ion cells containing component enhancements | Report on pressure studies for large capacity cells Report on life-limiting mechanisms Report on DPA of Gen-1 Li-ion cells | 4Q074Q074Q07 | | 3.2 | Battery Development | Complete preliminary assessment of charge methodologies Commence battery module design to meet Exploration requirements | Preliminary Report on charge methodologies | • 1Q07
• 2Q07 | | 3.3 | Test and Demonstration | Achieve 5,000 LEO cycles/AEA modules and MSA cells (NASA Li-ion Test Verification Program) Complete second year performance and safety assessment of Li-ion cells for Exploration Missions | Flow of data into performance model Reports on the performance and safety of SOA cells for Exploration Missions | • 3Q07
• 4Q07 | | | | Complete pack-level testing of SOA Li-ion cells for
Exploration Missions Complete testing on charge methodologies | Report on the performance of SOA Li-ion packs
for Exploration Missions Report and recommendations on best practices for
charging Li-ion cells | 4Q074Q07 | | 3.4 | Multi-Mission Support | Convene NASA Aerospace Battery Workshop Publish Battery Workshop proceedings | Battery Workshop Proceedings | • 1Q07
• 3Q07 | ## Table 2-3 Energy Storage Project Milestones and Deliverables FY 2008 | WBS | Tasks | Milestones | Deliverables | Date | |-----|-----------------------------|--|---|---| | 1.0 | Management | Complete detailed FY09 planning | Deliver updated WBS, Task Plan, schedule | • 4Q08 | | 2.0 | Energy Storage
Systems | Complete Requirements UpdateComplete Gap Analysis | | • 3Q08
• 3Q08 | | 3.1 | Battery Cell
Development | Demonstrate high energy cathode - 1000 Wh/kg (Gen-2) Formulate electrolyte for -60 to + 60°C operation Synthesize non-flammable Electrolyte (Gen-2) Complete performance assessment of Gen-1 Li-ion cells for Exploration Missions Complete Safety tests on Gen-1 Li-ion polymer cells | Gen-2 cathode (1000 Wh/kg) Electrolyte for -60 to + 60°C operation Gen-2 Non-flammable electrolyte Report on the performance and safety of Gen-1
Li-ion cells for Exploration Missions | 3Q083Q083Q084Q08 | | 3.2 | Battery
Development | Complete development/evaluation of charge control electronics for batteries/modules Complete control software based on preliminary results of Li-ion charging methodologies testing and studies Complete pressure studies on cell modules Complete battery module engineering model | Charge control electronics Charge control software/program Report on module performance/safety Battery module engineering model | 2Q083Q084Q084Q08 | | 3.3 | Test and
Demonstration | Complete third year performance and safety assessment of Li-ion cells for Exploration Missions Commence Qualification test of Battery Module | Reports on the performance and safety of Li-ion cells for Exploration Missions | 4Q084Q08 | | 3.4 | Multi-Mission
Support | Convene NASA Aerospace Battery Workshop Publish Battery Workshop proceedings | Battery Workshop Proceedings | • 1Q08
• 3Q08 | ## Table 2-4 Energy Storage Project Milestones and Deliverables FY 2009 | WBS | Tasks | Milestones | Deliverables | Date | |-----|-----------------------------|--|--|-------------------------------------| | 1.0 | Management | Complete updated Project Plan | Deliver updated Project Plan | • 4Q09 | | 2.0 | Energy Storage
Systems | Complete Requirements UpdateComplete Gap Analysis | | • 3Q09
• 3Q09 | | 3.1 | Battery Cell
Development | Complete performance testing of Gen-2 Li-ion cells for
Exploration Missions Complete Destructive Physical Analysis (DPA) of Gen-2 Li-ion
cells containing component enhancements | Gen-2 Li-ion cells and report on the performance
and safety of Gen-2 Li-ion cells Report describing failure modes of Gen-2 Li-ion
cells | 4Q094Q09 | | 3.2 | Battery
Development | Final assessment of charge methodologies Incorporate results of pressure studies into design for high voltage and/or high capacity batteries for lander/rover applications, using cells with variable temperature shutdown separator incorporated | Charge methodologies report 20 kWh, 70 to 85 V battery design | • 4Q09
• 4Q09
• 4Q09 | | 3.3 | Test and
Demonstration | Complete fourth year performance and safety assessment of
Li-ion cells for Exploration Missions Test and validate battery module engineering model | Reports on the performance and safety of SOA cells for Exploration Missions Validated battery module engineering model | 4Q094Q09 | | 3.4 | Multi-Mission
Support | Convene NASA Aerospace Battery Workshop Publish Battery Workshop proceedings | Battery Workshop Proceedings | • 1Q09
• 3Q09 |